Minggu, 25 Maret 2018

Bunyi

Bunyi 

BUNYI
Bagaimanakah Terjadinya Bunyi?
Setelah karet dipetik, karet akan bergerak bolak-balik dengan cepat, dan kamu dapat mendengar bunyi dari karet itu. Kejadian serupa dapat kamu amati pada Gambar 10.26. Selaput gendang yang dipukul akan bergerak maju mundur dengan cepat. Gelang karet dan selaput gendang tersebut adalah contoh-contoh benda yang menghasilkan bunyi. Apa persamaan contoh-contoh tersebut? Benda-benda itu bergetar saat menghasilkan bunyi. Pada saat sebuah benda bergetar, benda tersebut memberikan energi kepada partikel-partikel di sekitarnya. Energi ini menyebabkan partikel-partikel tersebut ikut bergetar. Dan dalam bentuk rapatan (daerah yang pertikelnya rapat) dan renggangan (daerah yang pertikelnya kurang rapat), getaran itu merambat meninggalkan sumber bunyi. Ingatlah kembali apa yang telah kamu pelajari. Rangkaian gerakan rapatan dan renggangan disebut gelombang longitudinal. Bunyi dihasilkan oleh benda yang bergetar, merambat dalam bentuk gelombang longitudinal.
Merambat Melalui Medium
Bunyi dapat merambat melalui zat padat, cair dan gas (sebagai contoh kayu, gelas, baja, air, udara).Pengeras suara dalam radiomu sebenarnya menggerakkan udara di depannya sehingga partikel-partikel udara itu bergetar. Jika tidak ada udara (medium) di depan pengeras suara itu, tidak akan terjadi bunyi. Tanpa medium untuk merambatkan getaran, tidak akan terjadi bunyi. Di permukaan bulan tidak ada atmosfer, sehingga tidak ada medium untuk merambatkan gelombang. Jadi tidak ada bunyi di bulan maupun di ruang hampa di tempat lain.
Cepat Rambat Bunyi
Jika seruling dan gitar dimain-kan bersamaan, kedua gelombang bunyi itu akan sampai di telingamu dalam waktu yang sama. Cepat rambat bunyi tidak bergantung pada jenis sumber bunyinya. Cepat rambat bunyi bergantung pada dua hal: jenis medium yang dilalui gelombang bunyi dan suhu medium.gelombang bunyi dapat merambat melalui berbagai jenis medium. Zat cair dan zat padat merupakan penghantar yang lebih baik daripada udara sebab partikel-partikel di dalam zat cair atau zat padat saling mempengaruhi lebih kuat daripada partikel-partikel udara. Hal ini mengakibatkan perpindahan energi gelombang bunyi di dalam zat padat atau zat cair menjadi lebih mudah daripada di udara. Suhu medium juga merupakan faktor penting dalam menentukan cepat rambat bunyi. Pada saat suhu zat meningkat, molekul-molekulnya bergerak lebih cepat sehingga frekuensi tumbukan antar partikel lebih banyak. Meningkatnya tumbukan molekul ini akan lebih banyak memindahkan energi dalam waktu yang lebih singkat. Ini memungkinkan gelombang bunyi berpindah lebih cepat. Bunyi merambat melalui udara dengan cepat rambat 344 m/s, pada suhu 20° C, namun hanya dengan cepat rambat 332 m/s, pada suhu 0° C.
Cepat rambat bunyi untuk medium tertentu dan suhu tertentu besarnya tetap. Gerak dengan kecepatan tetap ini disebut gerak lurus beraturan (GLB). Seperti yang telah kamu pelajari pada tentang gerak, dalam GLB hubungan antara cepat rambat dengan jarak tempuhnya adalah: Perhatikan soal contoh di bawah ini, kemudian berlatihlah dengan mengerjakan soal latihan. Penggunaan Matematika cepat rambat = jarak tempuh/waktu.
Ciri-Ciri Fisik Bunyi
Nada Bunyi
Nada adalah tinggi atau rendahnya bunyi. Nada yang kamu dengar bergantung pada frekuensi gelombang bunyi tersebut. Semakin besar frekuensinya, semakin tinggi nadanya, dan semakin kecil frekuensinya, semakin rendah nadanya.
2
Gambar sedang meniup seruling.
Sumber gambar : google
Gelombang Ultrasonik dan Infrasonik
Kebanyakan manusia tidak dapat mendengar bunyi dengan frekuensi di atas 20.000 Hz, yang dinamakan gelombang ultrasonik. Hewan-hewan tertentu, seperti anjing, kucing, dan lumba-lumba dapat mendengar gelombang ultrasonik. Kelelawar dapat menghasilkan dan mendengar frekuensi setinggi 100.000 Hz untuk mengetahui posisi makanan dan menghindari benda-benda saat terbang di kegelapan. Gelombang ultrasonik digunakan pada sonar di samping pada diagnosis kesehatan dan pengobatan.
Sonar atau Sound Navigation and Ranging merupa-kan suatu metode penggunaan gelombang ultrasonik untuk menaksir ukuran, bentuk, dan kedalaman benda-benda di bawah air. Metode ini digunakan antara lain untuk menentukan posisi kawanan ikan di bawah air.Infrasonik atau subsonik merupakan gelombang yang mempunyai frekuensi di bawah 20 Hz. Gelombang-gelombang ini dihasilkan oleh sumber bunyi seperti mesin berat dan gempa. Meskipun kamu mungkin tidak dapat mendengar bunyi itu, kamu dapat merasakan gelombang-gelombang ini sebagai getaran yang mengganggu di dalam badanmu. Kawanan gajah berkomunikasi dengan gelombang infrasonik.
download (3)
Gambar pengklasifikasian gelombang.
Sumber gambar : google.
Kuat Bunyi
Kuat bunyi merupakan ukuran keras lemahnya bunyi yang didengar oleh teling. Kuat bunyi berhubungan dengan energi gelombang bunyi. Gelombang bunyi yang berenergi besar akan menghasilkan bunyi yang kuat. Sebaliknya, gelombang bunyi berenergi kecil menghasilkan kuat bunyi yang kecil. Kuat bunyi diukur dalam satuan desibel.
Pemantulan Bunyi
Pada saat gelombang bunyi menumbuk sebuah permukaan seperti dinding, lantai, atau langit-langit, sebagian energi bunyi tersebut diserap dan sebagian lagi dipantulkan. Permukaan yang keras memantulkan lebih banyak bunyi. Bahan yang lunak seperti karpet dan busa menyerap energi gelombang bunyi lebih banyak.
Pernahkah kamu berteriak di depan sebuah gua atau tebing? Setelah kamu berteriak, sesaat kemudian seperti ada yang membalas teriakanmu. Sebenarnya balasan teriakan itu berasal dari teriakanmu yang dipantulkan kembali. Pada kejadian ini kamu telah mendengar gema. Gema adalah perulangan bunyi yang terdengar setelah bunyi ditimbulkan, terjadi ketika gelombang bunyi dipantulkan oleh suatu permukaan. Seberapa cepat kamu mendengar gema bergantung seberapa jauh kamu dari permukaan yang memantulkan bunyi itu. Pernahkah kamu mengikuti sebuah pidato dengan menggunakan pengeras suara di salah satu ruangan di sekolahmu? Mungkin kamu dapat mendengar sisa bunyi sesaat setelah sebuah kata diucapkan, sehingga mengganggu bunyi aslinya. Peristiwa ini disebut gaung. Gaung adalah perulangan bunyi yang terdengar hampir bersamaan dengan bunyi dari sumber, dihasilkan oleh bunyi yang terpantul berkali-kali pada sebuah ruangan.
Sonar dapat digunakan untuk mengukur kedalaman laut. Sonar menerapkan prinsip pemantulan bunyi. Gelombang bunyi dipancarkan ke dalam air dari sebuah kapal. Gelombang bunyi merambat menurut garis lurus hingga mengenai sebuah penghalang, misalnya dasar laut. Ketika gelombang bunyi itu mengenai penghalang, sebagian gelombang itu dipantulkan kembali ke kapal sebagai gema. Waktu yang diperlukan gelombang bunyi untuk bergerak turun ke dasar dan kembali ke atas diukur dengan cermat. Perhatikan Gambar 10.36. Dengan menggunakan data waktu dan cepat rambat bunyi di air laut, orang dapat menghitung jaraknya (ingat: jarak = cepat rambat ´ waktu). Kedalaman laut dapat ditemukan dengan membagi jarak total dengan 2 (separuh untuk turun dan separuhnya untuk naik).
Print
Gambar sonar dari sebuah apal.
Sumber gambar : google
Pemanfaatan Bunyi
Melihat dengan Bunyi
Suatu teknik yang mirip dengan sonar digunakan dalam bidang kedokteran untuk mendiagnosis masalah kesehatan. Gelombang ultrasonik diarahkan ke dalam tubuh. Gelombang itu dipantulkan oleh organ-organ di dalam tubuh, misal nya organ dan tulang. Gelombang pantul itu kemudian dideteksi. Dengan menggunakan teknik ini pertumbuhan yang tidak normal dapat ditemukan. Teknik ini dikenal dengan nama ultrasonografi. Bayangan seperti hasil sinar-X dihasilkan selama proses ini. Namun tidak seperti sinar-X, yang hanya menghasilkan satu gambar untuk tiap pemotretan, ultrasonografi dapat dipergunakan secara terus menerus mirip dengan video. Hal ini berguna untuk memperlihatkan gerakan dalam tubuh. Mungkin kamu pernah melihat gambar pertumbuhan janin dengan teknik ultrasonografi.
Menghindari Pembedahan dengan Ultrasonik
Kadang-kadang endapan kalsium oksalat terbentuk dalam ginjal. Endapan ini biasa disebut batu ginjal. Operasi bedah ginjal merupakan pilihan utama untuk mengambil batu ginjal itu. Namun gelombang ultrasonik yang diarahkan pada batu ginjal tersebut seringkali dapat memecahkan batu itu tanpa pembedahan. Pecahan-pecahan batu itu selanjutnya dapat keluar secara alami bersama air seni. Perlakuan yang sama dapat dikenakan pada batu empedu. Pasien yang berhasil ditangani dengan cara ini lebih cepat sembuh dibandingkan dengan cara pembedahan
Pembersih Ultrasonik
Benda-benda tertentu, seperti permata dan komponen elektronik, terlalu lembut untuk dibersihkan dengan sikat atau sabun. Herankah kamu bila mengetahui bahwa kamu dapat membersihkan bendabenda itu dengan bunyi? Gelombang ultrasonik dapat digunakan untuk membersihkan permata, komponen elektronik, dan bagian-bagian mesin yang halus. Untuk melakukan hal ini, benda tersebut dimasukkan ke dalam cairan pembersih yang lembut. Gelombang bunyi selanjutnya diarahkan ke dalam cairan itu, menyebabkan cairan itu bergetar dengan intensitas yang besar. Getaran ini akan merontokkan kotoran yang menempel pada benda itu tanpa merusaknya.
Pengayaan Pendengaran Manusia
Detektor bunyi, seperti mikropon, menangkap dan mengubah energi kinetik dari gerak partikel dalam gelombang bunyi menjadi bentuk energi lain, biasanya energi listrik. Telingamu merupakan suatu detektor bunyi yang canggih. Telinga itu peka terhadap suatu rentang intensitas dan frekuensi bunyi. Telinga manusia memiliki tiga bagian: telinga bagian luar, telinga bagian tengah, dan telinga bagian dalam. Bagaimana kamu dapat mendengar? Pendengaran dimulai pada saat gelombang bunyi memasuki telinga bagian luar. Telinga bagian luar berlaku seperti corong untuk gelombang bunyi itu. Gelombang tersebut merambat melalui saluran telinga hingga mengenai gendang telinga, yang merupakan selaput tipis liat. Getaran partikel-partikel udara menyebabkan gendang ini bergetar.
Getaran dari gendang telinga masuk telinga bagian tengah. Telinga bagian tengah itu berisi tiga tulang terkecil dalam tubuh manusia. Gendang telinga menggetarkan tiga tulang tersebut. Ketiga tulang itu adalah martil, landasan, dan sanggurdi. Tulang-tulang ini berfungsi sebagai sistem pengungkit yang melipatgandakan gaya dan tekanan gelombang bunyi. Tiga tulang tersebut meneruskan getaran bunyi ke telinga bagian dalam. Telinga bagian dalam berisi rumah siput yang berisi cairan. Sel-sel rambut yang kecil di dalam rumah siput bergetar menyebabkan impuls-impuls syaraf dikirim ke otak melalui syaraf auditori. Kerusakan pendengaran yang disebabkan oleh bunyi keras tiba-tiba atau terusmenerus umumnya diakibatkan kerusakan pada bagian sel-sel seperti rambut yang kecil ini. Apakah kamu senang mendengarkan musik keras-keras? Ingat, bunyi-bunyi keras dapat mengakibatkan kerusakan pendengaran selamanya.
sumber : https://zumihanifa.wordpress.com/kelas-viii/getaran-gelombang-bunyi/

0 komentar:

Posting Komentar